

EFFECT OF A MIXTURE OF HERBS (ESTRAL) ON REPRODUCTIVE PERFORMANCE OF SOWS

Voortman Marielle, Chantziaras Ilias, Ferket Philippe, Sonalio Karina, Maes Dominiek

- 1. Introduction
- 2. Materials and methods
 - 3.1. Experimental design
 - 3.2. Parameters for comparison
- 3. Results
- 4. Conclusion

INTRODUCTION

- Suboptimal reproductive performance in many sow farms → huge economic losses for the farmer (Maes 2009)
- Good estrus post-weaning, pregnancy rate, and litter size → most important
- Possible measures:
 - improvement of management, housing and nutrition \rightarrow not always possible / sufficient
 - Hormonal treatment \rightarrow not systematically, risks (e.g. COF)

<u>AIM</u>

To investigate the effect of a mixture of herbs provided once to gilts and sows before weaning on estrus and reproductive performance

STUDY FARM

- One farm
- Free of PRRS virus, A. pleuropneumoniae and M. hyopneumoniae
- High level of management and biosecurity
- High reproductive performance
- Size: 200 sows (Hypor)
- 5-week system
- Weaning at 24 days
- Two teaser boars
- One week after insemination \rightarrow evaluation of body condition, group housing (feeding station)
- One week before expected farrowing \rightarrow farrowing house

- 50 sows per weaning group
- 6 successive sow batches (300 in total)
- At weaning: stratified randomization (gilts, parity 1, 2, 3 and >3) into treatment and control group
- Treatment:
 - Sows: 1x 50 g/sow in the morning the day before weaning
 - Gilts: 1x 50 g/ gilt in the morning the day after the last altrenogest treatment
- Control: normal feeding
- All other aspects (management, housing, feeding): treatment and control group similar

Ingredients of the herb mixture (Estral ®)

- Vitex Agnus Castus: contains flavonoids vitexin and casticin)
- Salvia Officinalis
- Thymus Vulgaris ____

Once via top dressing

PARAMETERS OF COMPARISON

Estrus

- % of sows showing estrus
- WEI
- Number of inseminations per estrus

Pregnancy

- Pregnancy rate
- Pregnancy duration

Litter data

- Total born, liveborn, stillborn, mummified
- % of sows with stillborn and mummified pigs

Piglet weight 24h after birth

DATA ANALYSIS

Parameter	Model
Estrus, pregnancy, and litter performance	Generalized linear mod - treatment as the inder - batch and parity as co
Gestation length	Kruskal-Wallis ANOVA

del, with: pendent variable ovariates

RESULTS: ESTRUS AND PREGNANCY

Parameter	С
% of sows in estrus post-weaning	98.1
Weaning-to-estrus interval (hours)	113.1
Number of inseminations per estrus	2.4
Pregnancy rate (%)	93.2
Gestation length (days)	115.7

Т	p-value
98.0	0.899
112.9	0.723
2.3	0.387
97.4	0.072
115.4	0.036

RESULTS: LITTER DATA

Parameter	C
% of stillborn pigs	7.3
% of sows with stillborn pigs	42.9
% of mummified pigs	2.7
% of sows with mummified pigs	66.2
Total born pigs per litter	16.5
Liveborn pigs per litter	15.1
Litter weight 24h post-partum (kg)	21.1

Т	p-value
7.1	0.958
41.2	0.756
2.8	0.961
64.1	0.699
16.7	0.651
15.3	0.605
21.3	0.663

DISCUSSION

- Most parameters numerically better in treatment group
- Gestation length significantly shorter -0.3 days (7.2 h) (P<0.05)
- Pregnancy rate +4.2% (93,2% vs 97,4%) (P=0.072)

oup 2 h) (P<0.05) 2)

- Treatment: 1x, easily applicable, easy to implement in daily management
- Smell / taste of the product
- Only one farm with good reproductive performance \rightarrow not much room for improvement
- Further research: more farms, farms with lower reproductive performance, effects of other doses of the product

